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We consider a blob of Newtonian fluid sandwiched in the narrow gap between two 
plane parallel surfaces. At some initial instant, its plan-view occupies a given, simply 
connected domain, and its growth as further fluid is injected at  a number of injection 
points in its interior is to be determined. It is shown that certain functionals of the 
domain of a purely geometric character, infinite in number, evolve in a predictable 
manner, and that these may be exploited in some cases of interest to yield a complete 
description of the motion. 

By invoking images, these results may be used to solve certain problems involving 
the growth of a blob in a gap containing barriers. Injection at a point in a half-plane 
bounded by a straight line, with an initially empty gap, is shown to lead to a blob 
whose outline is part of an elliptic lemniscate of Booth for which there is a simple 
geometrical construction. Injection into a quarter-plane is also considered in some 
detail when conditions are such that the image domain involved is simply connected. 

1. Introduction 
In  an earlier paper (Richardson 1972) a class of time-dependent free-boundary 

problems involving Hele Shaw flow was considered. In  particular, the expansion of 
a blob of Newtonian fluid sandwiched in the narrow gap between two plane parallel 
surfaces as a result of the injection of further fluid into the blob a t  a single fixed point 
was examined. For blobs whose plan-view occupies a simply connected domain, it 
was shown that the motion possesses an infinite number of invariants which are func- 
tionals of a purely geometric character, and that these could be exploited to yield a 
complete analytic description of the growth of the blob in certain circumstances. 
Specifically, if the original domain occupied by the blob is the image of a circular disk 
under a conformal map by a rational function, these considerations reduce the problem 
to that of solving a finite system of algebraic equations. 

In  the present paper, we consider the growth of such a blob under the influence of 
injection a t  several fixed points. The analogues of the functionals introduced to examine 
the motion with a single injection point are no longer invariants but are found to 
evolve in a simple, predictable manner, and can still be exploited to yield complete 
analytic solutions describing the evolution of the blob. This generalization to more 
than one injection point is of interest because it allows one to deal with a number of 
problems involving the interaction of an expanding blob with barriers or boundaries 
within the gap. For example, consider an initial blob which is symmetric about a 
given line to be injected at two points symmetrically placed with respect to that line, 
the injection rate being the same a t  both points. It is evident that the growing blob 
will remain symmetric about the line, and the resultant flow in a half-plane bounded 
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264 8. Richardson 

by this line of symmetry is the same as that which would occur with a single injection 
point and the boundary of the half-plane as a barrier. Similarly, the expansion of a 
blob confined to a quarter-plane by two semi-infinite lines meeting at right-angles 
under the influence of a single injection point can be treated by invoking an image 
system with a total of four injection points. More complex problems involving straight- 
line boundaries can also obviously be reduced to a consideration of a single unconfined 
blob with several injection points by introducing a suitable image system. 

2. Basic equations 
We consider the motion of a blob of fluid in the narrow gap between two parallel 

planes. The plan-view of the blob occupies a simply connected domain, parts of whose 
boundary are formed, in general, by portions of fixed boundaries representing barriers 
within the gap, the remaining parts of the boundary being free boundaries which 
advance as the blob grows. During this growth, the points where free boundaries 
meet fixed boundaries must be expected to move along the fixed boundaries. The motion 
is driven by the injection of further fluid at fixed points within the domain occupied 
by the blob. 

Taking Cartesian co-ordinates (x, y) so that the (2, y) plane is parallel to the planes 
bounding the gap, standard arguments allow the problem to be reduced to one involv- 
ing a spatial dependence on x and y only, these varying in the domain occupied by the 
plan-view of the blob. The average velocity over the gap, u, is found to be given by 

u = V’, (2.1) 

where 4, the velocity potential, is proportional to the pressure in the fluid. Incom- 
pressibility implies that this averaged velocity is divergence-free, so that 

V2q5 = 0, except at  the injection points. (2.2) 

At a fixed boundary, the normal component of the averaged velocity must va;nish, 
implying 

(2.3) _ -  ’’ - 0 at a fixed boundary. 
an 

At a free boundary, we can expect a constant pressure condition to be relevant. 
It is easy to envisage problems in which different constant pressures are applicable on 
different portions of the free boundary, but we consider only the case where the same 
constant pressure is applicable everywhere. Since only the pressure gradient is relevant 
for the flow, we may take this constant pressure to be zero, so that we have 

q5 = 0 at a free boundary. (2.4) 

If we have injection at the points Pi for i = 1,2, .  .., n, then 

where ri is the distance from the point e, and Qi is the rate of increase of area of the 
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blob due to  injection at pi (that is, Qi is the volume input rate at pi divided by the gap 
width). 

At a given time, with the blob occupying a given domain, conditions (2.2)-(2.5) are 
sufficient to  define the velocity potential q5 uniquely in that domain. The evolution 
in time is then determined by equating the rate of advance of the free boundary to the 
average velocity at the free boundary computed from this velocity potential. Thus 
the velocity of advance is given by 

u = 2 n  a t  a free boundary. (2.6) an 

Some comments on the relevance of the free-boundary conditions adopted here are 
given by Richardson (1972), and these should be borne in mind when attempting to 
apply this mathematical model to a given physical situation. For example, Saffman & 
Taylor (1958) fmd good agreement between their experiments and a theory using 
these boundary conditions in general, but the theoretical predictions differ significantly 
from the experimental results when the velocities involved are smal1.t The details of 
the flow near such a moving free boundary are still poorly understood and may depend 
on whether the boundary is advancing or retreating - and the flow near the junction 
of a fixed and a free boundary is obviously even more complex. An analysis bearing 
on the relevance of condition (2.3) a t  a fixed boundary is given by Thompson (1968). 

It is worth noting that, a t  points where a fixed and a free boundary meet, the velo- 
city of advance of the free boundary must be both perpendicular to the free boundary 
and parallel to the fixed boundary, according to the present mathematical model. Thus 
free boundaries advancing along fixed boundaries always meet them at right-angles. 
Condition (2.4) implies that the free boundaries are level lines of the harmonic function 
$, while condition (2.3) implies that the fixed boundaries are level lines of any corre- 
sponding conjugate harmonic function, but this alone does not imply that they meet 
at right-angles unless we know also that q5 can be continued as a harmonic function 
into a full neighbourhood of the point where they meet. 

Suppose now that we have an arrangement which is symmetric about a given line: 
that is, the domain occupied by the blob and the fixed and free boundaries at some 
given initial time are symmetric with respect to this line, and the motion is driven by 
injection at  points which are also symmetric with respect to this line, the injection rate 
at symmetrically placed points being equal for all time. The velocity potential $ then 
necessarily has equal values at  symmetrically placed points and the resultant velocity 
of advance of the free boundaries is such as to maintain the symmetry for all time. 
Moreover, a$/& = 0 on the line of symmetry so that the flow which occurs in one of 
the half-planes bounded by this line is the same as that which would occur if this line 
were replaced by a fixed straight-line boundary. Conversely, a flow taking place to one 
side of a straight line with this line as a fixed boundary may be treated as a symmetrical 
flow by invoking images. I n  this way, a number of problems involving fixed boundaries 
which are straight lines may be transformed into problems in which fixed boundaries 

t Pitts (1980) obtains theoretical predictions in better agreement with observation for the 
Maffman-Taylor experiment with small velocities by invoking an ad hoc boundary condition for 
which no satisfactory explanation is offered, but discrepancies remain. The boundary condition 
used by Pitts is purely geometric in character and cannot be directly relevant for the more general 
circumstances of interest here. 
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FIGURE 1. Sketch showing the expansion of the blob over a small 
time interval from t to t + St. 

are entirely absent. In  this paper we consider only flows for which such a transforma- 
tion can be effected, so that the primary difficulty is to deal with simply connected 
blobs bounded only by a free surface, under the influence of several injection points. 

It is tempting to speclulate that a similar exploitation of images is possible when 
fixed boundaries in the form of circular arcs are involved, but a simple generalization 
in this direction proves not to be possible. If we imagine a blob expanding inside a 
fixed circular boundary, for example, i t  is true that at any particular time we may 
determine the relevant velocity potential by introducing an image system which is 
the inverse of the original in the circular boundary. Unfortunately, the velocities 
induced by this velocity potential do not maintain the image and original systems as 
inverses of each other, and the problem cannot be reduced to that of the growth of a 
single blob with no fixed boundaries. 

3. The moments 
Consider a blob occupying, a t  time t ,  a simply connected domain D(t) in the (z, y) 

plane, the entire boundary C(t) of D(t) being a free boundary. We have a velocity 
potential # satisfying V2# = O in D(t) except at the injection points 4 where # is 
singular as indicated by relation (2.5). On the whole of C(t) conditions (2.4) and (2.6) 
are applicable. The situation is sketched in figure 1 which shows, in particular, the 
expansion occurring over the small time interval from t to t + 6t. Because of condition 
(2.6), the normal displacement taking C(t )  to C(t + st) is (a#/an) 6t+ O(6t2) at each 

Let Z(z, y) be any function which is harmonic in the whole (z, y) plane and does not 
point. 

depend on time. Define 
P P  

Then it is easy to see that 



Some Hele Shaw flows with time-dependent free boundaries 267 

If we now apply Green's theorem in the form 

with u = q5 and w = Z to the region D(t )  with small circular disks about each injection 
point deleted, only the line integrals round the boundary give a non-zero contri- 
bution. Because of condition (2.4), the contribution of the line integral about C ( t )  
is precisely that obtained on the right-hand side of equation (3.2). Evaluating the line 
integrals around the small circles about each 4 in the familiar manner by letting their 
radii shrink to zero and exploiting the asymptotic forms (2.5) we obtain 

the sum being over all the injection points, where l(P,) denotes the value of Z(x, y) at 
the point Pi. We may write Qi = Qi(t)  = dA,(t)/dt where A,(O) = 0, so that A,(t) is the 
area increase of the blob since the initial time t = 0 due to injection a t  the point 4: 
that is, the total volume injected at Pi since the initial time is obtained by multiplying 
A&) by the gap width. Equation (3.4) can now be integrated to yield 

(3.5) 

In  particular, if we choose Z(x, y )  = zfl where z = x + iy is the usual complex variable, 

L(t) -L(O) = r, A&) Z(4). 
f 

for n = 0, 1,2, . .., and define the moments of the domain by 

zndxdy for n = 0, 1,2, ..., 
then 

MJt)  = M.(O) + 2 A,(t) zr for n = 0, I ,  2, ..., 
i 

where zi is the position of the injection point Pi in the complex plane. 
Given some initial domain, we may calculate M.(O). Knowing only the areas 

injected at each point 4, equation (3.7) then gives Mfl(t) for all later time. Note, 
in particular, that Mfl(t) depends only on the total area injected at each Pi up to 
the time t ,  and not on the precise mode of injection. For example, the same result is 
achieved by injecting the appropriate area at each point in turn as by injecting them 
all simultaneously. 

If we have only a single injection point at the origin, (3.7) reduces to the statement 
that the moments Mfl(t )  for n = 1,2,3, ... are actually constant in time, while &(t ) ,  
being the area of the domain, grows in a known manner. This special case of the general 
result was obtained in the earlier paper by a rather more involved argument. 

The ease with which (3.7) allows the moments of the expanding domain to be cal- 
culated leads one to ask whether a simply connected domain is uniquely determined 
by its moments, at least for domains of some suitably restricted family. This question 
naturally arose in the earlier considerations of Richardson (1972), and was also raised 
by Aharonov & Shapiro (1 97G)in connection with their work on qnadrature identities. 
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The problem was posed by Professor Shapiro during a seminar held at Kristiansand, 
Norway in 1975 (Bekken, Oksendal8E Stray 1976, p. 193) in the form - 

Let D, and D, be Jordan domains such that 

Must we have D, = D,? 
It is easy to show that (3.8) cannot hold if D, and D, have disjoint closures (that is, 

if B, n D2 is empty), for Runge’s theorem (see, for example, Heins 1968) then implies 
that the analytic function on D, U B2 which is equal to 1 on B, and 0 on B, can be 
uniformly a.pproximated by polynomials on Dl u D2, and integration over D, and D, 
easily leads to a contradiction when M, =t= 0. Moreover, the result is known to be true 
for certain sequences of moments No, M,, M,, . . . . Nevertheless, an example given by 
Sakai (1978) shows that the question as posed by Shapiro must be answered in the 
negative. In  spite of this, it is clear that one must expect the domains of some suitably 
restricted family to be uniquely specified by their moments. In  this paper, as in 
Richardson (1972), we by-pass such general questions by concentrating our efforts 
on a routine which enables us to construct domains from their moments in certain 
cases of interest. The success of the technique in its simplest form depends on the fact 
that a certain analytic function, constructed initially as a power series with the 
moments as its coefficients, is rational. The problem can then be reduced to one involv- 
ing the solution of a system of algebraic equations by considering a particular func- 
tional equation. 

It should also be remembered that, in the present problem, we seek a domain D(t) 
which varies with time in a continuous manner. Only if it is possible to have distinct 
Jordan domains (say) with the same moments which are arbitrarily close to each other 
(in the sense of a Hausdorff metric evaluated on their closures, for example) will the 
moments be unable to determine the expansion of a blob in a unique manner. In 
determining a domain from its moments, a local uniqueness result sufficient for present 
purposes may well be valid even when global uniqueness fails. 

4. Reduction to a functional equation 
We consider the problem of determining a bounded, simply connected domain D 

from its moments M, defined by (3.6). For many purposes, the fact that D and H, 
are associated with a domain which varies with time will be irrelevant, and the de- 
pendence on t will often be suppressed. The methods employed are essentially those 
of Richardson (1972), but we introduce the ideas in a different manner. 

Consider the function 

(4.1) 
du dv 

where z = x + i y  and w=u+iv. 

The integral is necessarily improper when z is in D.  Thus defined, h(z, y) is a con- 
tinuous function in the whole (x, y) plane. 

If z is exterior to D, then h(z,  y) is equal to an analytic function of z ,  say h&). 
Moreover, for bounded D we may expand the integrand of (4.1) in inverse powers of 
z for IzI sufficiently large to obtain 
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1 M, - for z in some neighbourhood of infinity. 
7T zn+l h,(z) = - 

The function he@) vanishes a t  infinity. Knowing the M,, we may regard he@) as known. 
In  general, he@) may be analytically continued into D ,  and this continuation process 
will produce singularities of he@) both in D and on the boundary, 80,  of D. We will 
assume that all the singularities in fact lie in D,  an assumption which is equivalent to 
the supposition that aD is an analytic curve. In the cases to be considered later, he(z) 
is actually a rational function whose only singularities are poles within D. 

For a point z in the interior of D, h ( x , y )  as defined in (4.1) may be evaluated (for 
bounded D) by enclosing D in a circular disk, D', of sufficiently large radius and writing 
the integral over D as the difference of an integral over D' and an integral over D' - D. 
The integral over the circular disk D' is easily evaluated explicitly and is Z, where an 
overbar denotes the complex conjugate, while the integral over D' - D is an analytic 
function of z for z in D. We bhus have 

Z + h&) for z interior to D, 
for z exterior to D, '('2 '1 = (he(z) (4-3) 

where the subscripts i and e denote analyticity interior and exterior to D, respectively. 
In fact, relations (4.3) follow from (4.1) even when D is not bounded if the integral in 
(4.1) exists for all z, as shown by Aharonov &, Shapiro (1976), but the expansion (4.2) 
is not then feasible. 

The continuity of h(x, y) now allows us to deduce from (4.3) a relation which must 
hold on the boundary 80. In  fact, 

he@) = z+h,(z) on aD. (4.4) 

Let z = f(6) map D conformally onto 161 < 1 in the 6 plane: we may require that 
f(0) = zo where zo is some convenient point in D, and f '(0) > 0, to specifyf(6) uniquely. 
With aD an analytic curve, f(S) is actually analytic for < 1 and we may also con- 
template its analytic continuation into 161 > 1. The boundary relation (4.4) then 
transforms to a relation holding on the unit circle in the 6 plane: 

- 
-hi(f (6)) +hAf (C)) =f (6) on 161 = 1. (4.5) 

On = 1 we have g = l/[, so that this is equivalent to 

But this is now a relation between the boundary values of analytic functions, and it 
must therefore hold in any region into which the relevant functions may be analytically 
continued. If aD is an analytic curve we have: 

(i) the first term on the left of (4.6) is analytic in 161 < 1; 
(ii) the second term on the left has singularities in 161 < 1 whose nature is the same 

(iii) the term on the right is analytic in 161 B 1 and tends to zo at infinity. 
as that of the known singularities of he@) in D; 

It follows that the only singularities off( 1/6) are within 161 < 1 and that their form is 
identical with those of h&). One can therefore, in general, write down theform of the 
mappingf(6). In  particular, when he(z) is a rational function the singularities off( 1/[) 
are all poles, and a quantitative comparison of the singularities in (4.6) scrves t.0 fixf(5) 

- 
- 
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completely by determining the positions and principal parts of these poles. This pro- 
cedure is the same as that adopted in Richardson (1972), and is further illustrated by 
the two examples in the following sections. However, before considering these examples 
it will be helpful to insert a few remarks concerning the calculation of the moments 
H, and the function he@) for a given domain. 

Using Green’s theorem, the integral over D appearing in the definition of the 
moments in (3.6) may be transformed to an integral over the boundary 8 0  to give 

M, = zjaoznZdz. 1 
(4.7) 

If, now, aD is analytic and given by X = g(z), where g(z) is analytic in a neighbourhood 
of aD, (4.7) gives M, in a form allowing standard techniques of contour integration 
to be exploited. For example, a circle centre the origin, radius r ,  is given by Z = r2/z, 
and (4.7) yields the corresponding moments as 

m 2  for n = 0, 
0 for n = 1 ,2 ,3  ,.... 

r2 M, = %JaD zn-ldx = 

Equation (4.7) is also useful when aD is piece-wise analytic - when it is a polygon, for 
example. 

If the whole of aD is given by Z = g(z), as above, and we can write g(z) = ge(z) +g&) 
where ge(z) is analytic exterior to D and vanishes at  infinity, while g,(z) is analytic 
interior to D, then he@) = ge(z) (see Richardson 1972), thus making the preliminary 
calculation of the moments unnecessary. For the circle of radius r centre the origin 
we therefore have he(z) = r2/x.  

If a domain is translated through a distance represented by the complex number a, 
then evidently 

Mn+ (“)UkMn-k,  where (i) 
k=O k 

is the usual binomial coefficient, and he@) + he(z -u). Thus, for the circle of radius r 
centred at  x = u we have M, = nr2un for n = 0, 1,2,  .. . and he(x) = r%/ ( z -a ) ,  results 
which follow equally easily from the earlier remarks and the fact that such a circle 
is given by Z = Z + ? / ( x  - a).  

It should also be borne in mind that both M, and he@) are additive domain fmc- 
tionals for disjoint domains, a property which will prove useful in the examples to 
follow. 

When we wish to emphasize that we are dealing with a domain D(t)  which is varying 
with time, we write the function he@) derived from the domain D(t) at time t as 
he(z; t ) .  (3.7) and (4.2) together then imply that 

This relation generally allows one to avoid an explicit calculation of the moments, 
though their values are often of independent interest. 
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5. Injection into a half-plane 
We consider injection a t  the single point z = 1 in the half-plane x > 0 bounded by 

the infinite straight-line barrier x = 0. Beginning with an empty gap, we expect the 
blob to grow initially as a cirkular disk centred at the injection point, and it is easy to 
confirm that the procedure given in the previous section leads to this conclusion.? 
Indeed, translating the origin to the injection point temporarily, it is equivalent to the 
statement that B simply connected domain with Mn = 0 for n = 1,2,3, . . . must be a 
circular disk centred on the origin, and this result has been proved under more general 
conditions than are required in present circumstances. (See Aharonov & Shapiro 1976 
for a discussion bearing on this aspect of the problem, and references to earlier work.) 

With injection at the point z = 1, the blob will grow as a circular disk centred on 
z = 1 until an area n has been injected, when the disk just touches the boundary x = 0 
a t  the origin. To follow the further expansion of the blob as it runs along this boundary, 
we invoke images so that we have two injection points at z = & 1 with equal injection 
rates and a situation which is symmetric about the line x = 0. The initial state for this 
image system when the blob first touches the boundary x = 0 (taken as the time 
origin t = 0 for present purposes) consists of the union of two circular disks of unit 
radius centred at the points z = & 1 and for this we have 

2n, neven, 
Mn(0) = (0, nodd, 

and 
1 1 

2 - 1  z + l  
he(z;0) = -+-. 

From (4.8), it follows that when the area of the blob in x > 0 is A > n, that is when a 
further area A - n has been injected at  both z = & 1 since time t = 0, we have 

This same form for h&) is, of course, valid for the original blob plus its image for all 
A > 0, giving two disjoint circular disks for 0 < A < n, if we generalize the definitions 
in an obvious manner. 

In  fact, it will prove more convenient to work with an equivalent radius, R, for the 
blob, defined by 

so that (5.1) becomes 
A = nRa, (5.2) 

Since he@; t )  has two simple poles, it  follows from (4.6) that the function z = f (C)  
mapping the domain in the z plane at time t to the interior of the unit circle in the 5 
plane is such that f(1/5) has two simple poles in 141 < 1. Moreover, if we impose 
f (0) = 0 and f ‘(0) > 0 as the extra conditions required to determine f(C) uniquely, 

t It. is a liiiiitiiig cnsc of the oxnmplc in Riclinrdson (1972). 

- 
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we havef( 1/5) --f 0 as 161 + 00. Exploiting the fact that we expect the domain in the 
z plane to be symmetric about both the lines x = 0 and y = 0,t implying 

- 

- 
f(5) =fa = -f(--5), 

w 

we can take the poles off( 1/<) to be at the points f 5, with 

implying 

where both a and co are real, a > 0 and 0 < c,, < I .  
Near 5 = c0, corresponding to z = 1, (5.3) implies that 

+regular terms 
R2 

U f ( 6 ) )  = fT1 
R2 

Comparing the positions and residues of the poles on both sides of (4.6) we thus require 
f(5,) = 1 and af’(5,) = 2R2. Withf(C) given by ( 5 4 ,  these two conditions lead to 

ago = 1 -6; and 6;-2R25:+ 1 = 0. (5 .6)  

6, = [R2- (224 - l)h]* and a = (1 - C;)/co. (5 .7)  

Since we require 0 < So < 1 for R > 1, we thus have 

With these values of a and co, the functionf(6) in (5.5) gives the required mapphg 
when the blob has area A = nR2. The mapping (5.5) may be written as 

which exhibits it as a Joukowaki mapping followed by an inversion. The boundary 
of the blob is thus a curve formed by inverting an ellipse with respect to its centre. 
Such a curve has been called an elliptic lemniscate of Booth by Loria (1902), recogniz- 
ingitsappearancein the workofthe Reverend JamesBooth (1873,1877) .  Thestandard 
Cartesian equation of the elliptic lemniscate of Booth is 

( 2 2  + y2)2 = a%2 + b y ,  (5.9) 

the isolated point at the origin which satisfies this relation not being regarded aa part 
of the curve. In  this form, the curve is the inverse of the ellipse a%2+ beyz = 1 in the 
unit circle, centre the origin. It is also the locus of the foot of the perpendicular from 
the origin to a variable tangent of the ellipse (x/a)Z + ( ~ / b ) ~  = 1; that is, it is the pedal 
curve of this ellipse with respect to the origin. To obtain the required outline of the 
blob in the form (5.9) we must take 

= 2(R2+ 1),  b2 = 2(R’- 1). (5.10) 

t It is not, in fact, neceeeary to invoke symmetry at this stage. The pole positions and residues 
may be put as four arbitrary complex numbers subject only to the requirements that the poles 

off(l/c) lie in 151 < 1, f ( 0 )  = 0 andf’(0) > 0. The symmetry then emerges naturally in the eub- 
sequent solution, but we here anticipate the symmetry to simplify the algebra of the presentation. 

- 
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Y' 
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FIQUFLE 2. Construction of the elliptic lemniscate of Booth giving the blob outline. For a blob of 
area A = nRa take p z  = &(Rz + I) . OP = M N  and the locus of P is the required outline. 

A further construction for the lemniscate is also of interest, and this is illustrated 
in figure 2. Adapting magnitudes to the present problem, draw a circle of radius 
p > 1 centred on the injection point at (2, y) = (1,O): to obtain the outline for a blob 
of area A = nR2 we need to take pe  = +(Re + 1) .  If a variable line through the origin, 
0, cuts the circle in M and N, take P on this line so that OP = M N .  The locus of P is 
the required outline. This construction may be interpreted as a law of reflection for 
the expanding blob, though the areas of the blob and the disk used in its construction 
are not equal. 

The outline cuts the x axis a t  x = (2(P + 1) ) )  and meets the y axis at 

y = * {2(R%- l)}). 

For 1 < Re < 3 the blob is non-convex, its maximum width in the y direction being 
Re + 1 attained at x = #{ (Re + 1 ) (3 - R*)}'. When Re = 3 the maximum width in the 
y direction is at.x = 0, this maximum width being 4 as the points of intersection with 
the y axis are then at f 2. For Re 3 3 the blob is convex, and tends to a semi-circle 
with diameter on x = 0 as R + 00. 

A consideration of the limit R --+ 1 + is of interest mathematically, for then a + 0 + 
and f + 1 - in such a way that the lemniscate tends to the initial state with two 
circles of unit radius touching tangentially. Nevertheless, f(c) tends to the zero con- 
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stant for 151 < 1 as is required by the Carathbodory kernel theorem (see, for example, 
Carathkodory 1952, p. 74 et seq.). This initial state is the inverse of the lines x = & + 
in the unit circle, and also the locus of points at which lines from the origin and either 
of the points ( & 2 , O )  subtend a right-angle, these being the forms to which the two 
constructions of the lemniscate of Booth from an ellipse mentioned earlier degenerate; 
the construction of figure 2 degenerates to the case p = 1. 

6. Injection into a quarter-plane 
We consider injection a t  the single point z = 1 + i Y in the quadrant x > 0, y > 0 

bounded by the straight-line barriers x = 0 and y = 0. By symmetry, we may confine 
attention to the range Y 2 1. Beginning with an empty gap, the initial growth follows 
that already determined in 3 5; the situation is merely translated a distance Y in the 
y direction. 

If Y 2 2, the blob grows as a circular disk until it hits the line x = 0 and then 
spreads along this boundary until, when its area is A,  = nR8 where R% = 1 + iY2, it 
first encounters the boundary y = 0 a t  the origin, the analysis of the previous section 
describing this phase of the motion in detail. To follow the motion beyond this point 
we invoke an image system which is symmetric about both x = 0 and y = 0, and which 
has four injection points at f 1 f iY, the injection rate being the same at all four 

If Y = 1, it is evident that the initial circular blob hits both boundaries x = 0 and 
y = 0 simultaneously as it grows. If 1 < Y c 2, the line x = 0 is encountered first, 
but the blob then hits the line y = 0 a t  a point away from the origin. In  either case, 
the subsequent flow may again be treated by invoking images, but a doubly connected 
image domain is involved. Since the present work considers only simply connected 
domains, we here restrict attention to the range Y 2 2. 

When the blob has an area A = nR2 with R > €2, for Y 2 2, the domain occupied 
by the whole image system has 

points. 

(6.1) 
1 1 1 

h&) = R2 z-1-iY + z - l + i Y  + z+l- iY  + z+l+iY 

This follows from (4.8), (5.3), the fact that he@) is an additive domain functional for 
disjoint domains, and from its known behaviour under translation. 

Equation (4.6) now implies that the required mapping z = f(5) is such that f( l/() 
has four simple poles in 151 c 1 ; takingf(0) = 0 andf’(0) > 0 to determinef(5) uniquely 
again implies that f( l/g) vanishes at infinity. Exploiting the symmetry, we can take 
the poles at f lo and f to, where 0 < arg go c in, say, and 

- 

- - - a a a a +- +-+-, 
f(l’g) = 5 7 0  5 + 5 0  5 - 5 0  5 + 5 0  

whence 

where Re (a} > 0 is necessary forf’(0) > 0. 
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Near 1: = Yo corresponding to z = 1 + i Y we have, from (6.1) 
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+regular terms 

R2 

R2 
k?(f(f)) =f(C)-l-iy 

+regular terms. - - 
f (Y0) - 1 - i y  + f ' ( Y O )  (C- G) 

Balancing the poles in (4.6) thus requiresf(C,) = 1 +iY and af'(&,) = R8. Withf(C) 
given by (6.3), these conditions are 

and 

For given Y 2 2 and R > R, these are to be solved for Yo and a. 
A formal asymptotic expansion for large R shows that 

l+iY  R4+O(R4)} as R + m ,  (6.6) 

while 

a - +R { 1 + [ -3 (Y2- 1)2 +=( Y2- l)] R-"+ O(R4)] as R 3 a ~ .  (6.7) 

In  particular,f(C) - 2RY as R -+ co for Ill < 1, so that the blob tends, as expected, 

A formal asymptotic expansion for the solution of (6.4) and (6.6) when R 3 Ro + 

(6.8) 

where 6 is real and small, and 0 is real, we may expand 8, a and Re in powers of d to 
obtain 

32 8 

to a circular form, the complete image approaching a circular disk of area 4nRr. 

is best obtained by first noting that then Yo -+ i. Writing 

go = i + 8eie, 

and 

where 

and 

(6.10) 

(6.11) 

Y2( Y2 - 4)6z + Y3( Y2- 4)63 
(Y2+4)* 

R2 = R$+ 
YZ+ 4 

64+0(65). (6.12) 
30Y8+797Y6-819Y4- 1780Y2+160 

24( Y2 + 4)9 
+ 

From (6.12) it follows that 6 is of order ( R  - R,)) for Y > 2, but of order ( R  - R,)i for 
Y = 2. 
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FIGURE 3. Growth of a blob in a quarter-plane. The injection point is at (1 ,2 ) .  With the area of 
the blob &s A = nRa, the outlines are plotted at increments of 0.05 in R. 

These asymptotic forms for R +- co and R + Ro + must be complemented by a 
numerical solution for intermediate values of R. For this purpose, it seems simplest 
first to solve (6.4) for a as a function of co by taking its conjugate and eliminating h, 
and then to use this to substitute for a in (6.5),  thus obtaining a single equation to 
be solved for c0 when Y and R are given. Rewriting this as a([o) + i7(cO) = 0 where cr 
and 7 are real functions of co, a standard search routine to find the value of go giving 
the minimum of u2 + 7 2  proved successful in all cases computed, the proximity of this 
minimum to zero when compared with the value of uz + 72 for neighbouring values of 
co giving an effective estimate for the accuracy of the solution obtained. 

To plot the outlines for a particular expanding blob with a given Y 2 2 it is simplest 
to begin with the largest value of R of interest and to use the dominant term of (6.6) 
as a preliminary estimate of the required root go in the search routine. This term 
alone actually gives a fairly accurate value for to even for values of R as low as 2R0, 
as might be expected from the fact that the expansion (6.6) proceeds in inverse fourth 
powers of R. For successively smaller values of R, previously determined roots may 
be used to furnish a preliminary estimate instead. 

Figure 3 shows the growth of a blob in the quarter-plane with the injection point 
at z = 1 + 2i. The outline evolves from its initial circular shape, through a family of 
elliptic lemniscates of Booth as determined in 0 5 ,  to a form described by the analysis 
of this section. 
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7. Concluding remarks 
It is evident that the techniques of the present paper can be used to solve other 

problems involving the growth of a simply connected blob under the influence of 
several injection points, whether these are obtained by invoking images or not. It is 
equally evident that, even when the initial blob is simply connected, the use of images 
can lead to the consideration of domains which are no longer simply connected, as 
with the expansion of a blob in a quarter-plane when 1 < Y < 2, as mentioned in J 6. 
I n  these circumstances, the moments defined in (3.6) alone can no longer suffice to 
determine the domain: for example, any circular annulus centred on the origin has 
M, = 0 for n = 1,2,3,  . . ., M, being its area. However, for multiply connected domains 
it is possible to define an extended system of ‘moments’ which behave in a predictable 
manner during injection, and which do seem sufficient to determine the domain, a t  
least in some cases of interest. The details have yet to be worked out, but the principles 
are simple extensions of those in the present paper. 

The use of images can also lead to a consideration of unbounded domains, even when 
the original domain is bounded: injection into an infinite strip obviously furnishes a 
problem of this kind. The moments of an unbounded domain can only be defined for 
a restricted class of such domains, but an unbounded domain can always be treated 
as the limit of a bounded one for present purposes, just as the expansion of a blob 
which initially occupies a half-plane was treated as a limiting case of an initially 
circular blob in Richardson (1972). 

In  other circumstances (for example, injection inside a rectangular boundary) the 
use of images leads one to consider unbounded domains of infinite connectivity, thus 
compounding the difficulties in the previous two paragraphs. Though a solution of 
such problems may be feasible, it seems likely that a direct consideration of the 
original situation without invoking images may be more profitable. In any case, 
images can only be used for very special geometries so that a technique for handling 
interactions with boundaries which does not exploit them is highly desirable. 

The analysis of J 3 concerning the moments and their predictable behaviour governed 
by equation (3.7) can be generalized in a number of directions. If we consider a three- 
dimensional blob of fluid in a homogeneous porous medium expanding under the 
influence of injection points within it (or contracting because of suction), a constant 
pressure condition being relevant at the free surface, the standard mathematical 
model is the three-dimensional analogue of that obtained for the Hele Shaw flow, 
Laplace’s equation still being relevant. One finds that the ‘generalized moments ’ 
formed by integrating solid harmonics over the domain now behave predictably. If 
we have a two-dimensional problem involving injection into a non-constant, but 
slowly varying, gap, or a three-dimensional problem involving a blob of fluid in a 
porous medium whose permeability depends on position, the relevant equation is no 
longer that of Laplace. Nevertheless, one finds that ‘generalized moments ’, defined 
by integrating a suitable set of solutions of this equation over the domain occupied 
by the fluid, again satisfy an equation similar to (3.7). This fact can obviously be used 
as a check on any numerical solution obtained to a problem of this kind, but whether 
these generalized moments can be exploited more directly to construct non-trivial 
explicit solutions in these circumstances remains to be seen. 
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The numerical computations involved in the solution of equations (6.4) and (6.5) 
and the production of figure 3 were performed by Mr N. K. Mooljee of the Edinburgh 
Regional Computing Centre. His valuable assistance is gratefully acknowledged. 
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